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Agenda
• Why threads?
• Approaches for starting threads

– Separate class approach
– Callback approach 

• Solving common thread problems 
• Synchronizing access to shared resources 
• Thread life cycle
• Stopping threads
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Concurrent Programming 
Using Java Threads

• Motivation
– Efficiency

• Downloading network data files
– Convenience

• A clock icon
– Multi-client applications

• HTTP Server, SMTP Server
• Caution

– Significantly harder to debug and maintain
• Two Main Approaches:

– Make a self-contained subclass of Thread with the 
behavior you want 

– Implement the Runnable interface and put behavior in 
the run method of that object 
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Thread Mechanism One:
Making a Thread Subclass

• Create a separate subclass of Thread
– No import statements needed: Thread is in java.lang

• Put the actions to be performed in the run 
method of the subclass
– public void run() { … }

• Create an instance of your Thread subclass
– Or lots of instances if you want lots of threads

• Call that instance’s start method
– You put the code in run, but you call start!
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Thread Mechanism One:
Making a Thread Subclass

public class DriverClass extends SomeClass {
...
public void startAThread() {

// Create a Thread object
ThreadClass thread = new ThreadClass();
// Start it in a separate process
thread.start();

}
}

public class ThreadClass extends Thread {
public void run() {

// Thread behavior here
}

}
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Thread Mechanism One: 
Example

public class Counter extends Thread {
private static int totalNum = 0;
private int currentNum, loopLimit;

public Counter(int loopLimit) {
this.loopLimit = loopLimit;
currentNum = totalNum++;

}

private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds)); }
catch(InterruptedException ie) {}

}

...
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Thread Mechanism One: 
Example (Continued)
...

/** When run finishes, the thread exits. */

public void run() {
for(int i=0; i<loopLimit; i++) {

System.out.println("Counter " + currentNum
+ ": " + i);

pause(Math.random()); // Sleep for up to 1 second
}

}
}
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Thread Mechanism One: 
Example (Continued)
public class CounterTest {
public static void main(String[] args) {
Counter c1 = new Counter(5);
Counter c2 = new Counter(5);
Counter c3 = new Counter(5);
c1.start();
c2.start();
c3.start();

}
}
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Thread Mechanism One: Result
Counter 0: 0
Counter 1: 0
Counter 2: 0
Counter 1: 1
Counter 2: 1
Counter 1: 2
Counter 0: 1
Counter 0: 2
Counter 1: 3
Counter 2: 2
Counter 0: 3
Counter 1: 4
Counter 0: 4
Counter 2: 3
Counter 2: 4
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Thread Mechanism Two:
Implementing Runnable

• Put the actions to be performed in the run 
method of your existing class

• Have class implement Runnable interface
– If your class already extends some other class (e.g., 

Applet), why can't it still extend Thread? Because Java 
does not support multiple inheritance.

• Construct an instance of Thread passing in 
the existing object (i.e., the Runnable) 
– Thread t = new Thread(theRunnableObject);

• Call that Thread’s start method
– t.start();
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Thread Mechanism Two:
Implementing Runnable (Cont.)
public class ThreadedClass extends AnyClass

implements Runnable {
public void run() {

// Thread behavior here
// If you want to access thread instance
// (e.g. to get private per-thread data), use
// Thread.currentThread().

}

public void startThread() {
Thread t = new Thread(this);
t.start(); // Calls back to run method in this

}
...

}
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Thread Mechanism Two: 
Example
public class Counter2 implements Runnable {

private static int totalNum = 0;
private int currentNum, loopLimit;

public Counter2(int loopLimit) {
this.loopLimit = loopLimit;
currentNum = totalNum++;
Thread t = new Thread(this);
t.start();

}
...
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Thread Mechanism Two: 
Example (Continued)
...
private void pause(double seconds) {

try { Thread.sleep(Math.round(1000.0*seconds)); }
catch(InterruptedException ie) {}

}

public void run() {
for(int i=0; i<loopLimit; i++) {

System.out.println("Counter " + currentNum
+ ": " + i);

pause(Math.random()); // Sleep for up to 1 second
}

}
}
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Thread Mechanism Two: 
Example (Continued)
public class Counter2Test {

public static void main(String[] args) {
Counter2 c1 = new Counter2(5);
Counter2 c2 = new Counter2(5);
Counter2 c3 = new Counter2(5);

}
}
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Thread Mechanism Two: Result
Counter 0: 0
Counter 1: 0
Counter 2: 0
Counter 1: 1
Counter 1: 2
Counter 0: 1
Counter 1: 3
Counter 2: 1
Counter 0: 2
Counter 0: 3
Counter 1: 4
Counter 2: 2
Counter 2: 3
Counter 0: 4
Counter 2: 4
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Race Conditions: Example
public class BuggyCounterApplet extends Applet

implements Runnable{
private int totalNum = 0;
private int loopLimit = 5;

public void start() {
Thread t;
for(int i=0; i<3; i++) {

t = new Thread(this);
t.start();

}
}

private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds)); }
catch(InterruptedException ie) {}

}
...
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Race Conditions: Example 
(Continued)
...  
public void run() {

int currentNum = totalNum;
System.out.println("Setting currentNum to "

+ currentNum);
totalNum = totalNum + 1;
for(int i=0; i<loopLimit; i++) {

System.out.println("Counter "
+ currentNum + ": " + i);

pause(Math.random());
}

}
}

• What's wrong with this code?
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Race Conditions: Result
• Occasional Output
Setting currentNum to 0
Counter 0: 0
Setting currentNum to 1
Setting currentNum to 1
Counter 0: 1
Counter 1: 0
Counter 1: 0
Counter 0: 2
Counter 0: 3
Counter 1: 1
Counter 0: 4
Counter 1: 1
Counter 1: 2
Counter 1: 3
Counter 1: 2
Counter 1: 3
Counter 1: 4
Counter 1: 4

• Usual Output
Setting currentNum to 0
Counter 0: 0
Setting currentNum to 1
Counter 1: 0
Setting currentNum to 2
Counter 2: 0
Counter 2: 1
Counter 1: 1
Counter 0: 1
Counter 2: 2
Counter 0: 2
Counter 1: 2
Counter 1: 3
Counter 0: 3
Counter 2: 3
Counter 1: 4
Counter 2: 4
Counter 0: 4
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Race Conditions: Solution?
• Do things in a single step

public void run() {
int currentNum = totalNum++;
System.out.println("Setting currentNum to "

+ currentNum);
for(int i=0; i<loopLimit; i++) {

System.out.println("Counter "
+ currentNum + ": " + i);

pause(Math.random());
}

}
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Arbitrating Contention for 
Shared Resources

• Synchronizing a Section of Code
synchronized(someObject) {

code
}

• Normal interpretation
– Once a thread enters the code, no other thread can enter 

until the first thread exits. 
• Stronger interpretation 

– Once a thread enters the code, no other thread can enter 
any section of code that is synchronized using the same 
“lock” tag
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Arbitrating Contention for 
Shared Resources

• Synchronizing an Entire Method
public synchronized void someMethod() {

body
}

• Note that this is equivalent to
public void someMethod() {

synchronized(this) {
body

}
}
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Common Synchronization Bug

• What’s wrong with this class?
public class SomeThreadedClass extends Thread {

private static RandomClass someSharedObject;
...
public synchronized void doSomeOperation() {

accessSomeSharedObject();
}
...
public void run() {

while(someCondition) {
doSomeOperation();     // Accesses shared data
doSomeOtherOperation();// No shared data

}
}

}
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Synchronization Solution
• Solution 1: synchronize on the shared data

public void doSomeOperation() {
synchronized(someSharedObject) {

accessSomeSharedObject();
}

}

• Solution 2: synchronize on the class object
public void doSomeOperation() {

synchronized(SomeThreadedClass.class) {
accessSomeSharedObject();

}
}

– Note that if you synchronize a static method, the lock is the 
corresponding Class object, not this
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Synchronization Solution 
(Continued)

• Solution 3: synchronize on arbitrary object

public class SomeThreadedClass extends Thread {
private static Object lockObject 

= new Object();
...
public void doSomeOperation() {

synchronized(lockObject) {
accessSomeSharedObject();

}
}  
...

}

– Why doesn't this problem usually occur with Runnable?
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Thread Lifecycle

new

wait()

yield()

notify()

dispatch

ready

start()

running

waiting

blocked

sleeping
sleep()

Block on I/O

times expires
or interrupted

I/O completed

deadrun completes
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Useful Thread Constructors
• Thread()

– Default version you get when you call constructor of your 
custom Thread subclass.

• Thread(Runnable target)
– Creates a thread, that, once started, will execute the run

method of the target
• Thread(ThreadGroup group,        

Runnable target)
– Creates a thread and places it in the specified thread group
– A ThreadGroup is a collection of threads that can be 

operated on as a set
• Thread(String name)

– Creates a thread with the given name
– Useful for debugging
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Thread Priorities
• A thread’s default priority is the same as the 

creating thread
• Thread API defines three thread priorities

•Thread.MAX_PRIORITY (typically 10)
•Thread.NORM_PRIORITY (typically 5)
•Thread.MIN_PRIORITY (typically 1)

• Problems
– A Java thread priority may map differently to the thread 

priorities of the underlying OS 
• Solaris has 232–1 priority level; Windows NT has 7 

user priority levels
– Starvation can occur for lower-priority threads if the 

higher-priority threads never terminate, sleep, or wait for 
I/O
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Useful Thread Methods
• currentThread

– Returns a reference to the currently executing thread
– This is a static method that can be called by arbitrary methods, 

not just from within a Thread object
• I.e., anyone can call Thread.currentThread

• interrupt
– One of two outcomes:

• If the thread is executing join, sleep, or wait, an 
InterruptedException is thrown

• Sets a flag, from which the interrupted thread can check 
(isInterrupted)

• interrupted
– Checks whether the currently executing thread has a request for 

interruption (checks flag) and clears the flag
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Useful Thread Methods 
(Continued)

• isInterrupted
– Simply checks whether the thread’s interrupt flag has 

been set (does not modify the flag)
• Reset the flag by calling interrupted from within 

the run method of the flagged thread
• join

– Joins to another thread by simply waiting (sleeps) until 
the other thread has completed execution

• isDaemon/setDaemon
– Determines or set the thread to be a daemon
– A Java program will exit when the only active threads 

remaining are daemon threads
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Useful Thread Methods 
(Continued)

• start
– Initializes the thread and then calls run
– If the thread was constructed by providing a Runnable, 

then start calls the run method of that Runnable
• run

– The method in which a created thread will execute
– Do not call run directly; call start on the thread object
– When run completes the thread enters a dead state and 

cannot be restarted
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Useful Thread Methods 
(Continued)

• sleep
– Causes the currently executing thread to do a 

nonbusy wait for at least the amount of time 
(milliseconds), unless interrupted

– As a static method, may be called for nonthreaded 
applications as well

• I.e., anyone can call Thread.sleep
• Note that sleep throws InterruptedException. Need 

try/catch
• yield

– Allows any other threads of the same or higher 
priority to execute (moves itself to the end of the 
priority queue)

– If all waiting threads have a lower priority, then the 
yielding thread remains on the CPU
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Useful Thread Methods 
(Continued)

• wait/waitForAll
– Releases the lock for other threads and suspends itself 

(placed in a wait queue associated with the lock)
– Thread can be restarted through notify or notifyAll
– These methods must be synchronized on the lock object of 

importance

• notify/notifyAll
– Wakes up all threads waiting for the lock
– A notified doesn’t begin immediate execution, but is placed in 

the runnable thread queue
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Stopping a Thread
public class ThreadExample implements Runnable {

private boolean running;
public ThreadExample() 

Thread thread = new Thread(this);
thread.start();

}
public void run(){

running = true;
while (running) {

...
}
doCleanup();

}

public void setRunning(boolean running) {
this.running = running;

}
}
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Signaling with wait and notify
public class ConnectionPool implements Runnable {

...
public synchronized Connection getConnection() {

if (availableConnections.isEmpty()) {
try {

wait();
} catch(InterruptedException ie) {}
// Someone freed up a connection, so try again.
return(getConnection());

} else {
// Get available connection
...
return(connection)

}
}
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Signaling with wait and notify
(Continued)
public synchronized void free(Connection connection) {
busyConnections.removeElement(connection);
availableConnections.addElement(connection);
// Wake up threads that are waiting 
// for a connection
notifyAll();

}
...

}
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Summary
• Achieve multithreaded behavior by 

– Inheriting directly from Thread
(separate class approach) 

– Implementing the Runnable interface
(callback approach)

• In either case, put your code in the run
method. Call start on the Thread object.

• Avoid race conditions by placing the shared 
resource in a synchronized block

• You can’t restart a dead thread
• Stop threads by setting a flag that the 

thread's run method checks
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