
1 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

core

programming

Multithreaded
Programming

Multithreaded Programming2 www.corewebprogramming.com

Agenda
• Why threads?
• Approaches for starting threads

– Separate class approach
– Callback approach

• Solving common thread problems
• Synchronizing access to shared resources
• Thread life cycle
• Stopping threads

Multithreaded Programming3 www.corewebprogramming.com

Concurrent Programming
Using Java Threads

• Motivation
– Efficiency

• Downloading network data files
– Convenience

• A clock icon
– Multi-client applications

• HTTP Server, SMTP Server
• Caution

– Significantly harder to debug and maintain
• Two Main Approaches:

– Make a self-contained subclass of Thread with the
behavior you want

– Implement the Runnable interface and put behavior in
the run method of that object

Multithreaded Programming4 www.corewebprogramming.com

Thread Mechanism One:
Making a Thread Subclass

• Create a separate subclass of Thread
– No import statements needed: Thread is in java.lang

• Put the actions to be performed in the run
method of the subclass
– public void run() { … }

• Create an instance of your Thread subclass
– Or lots of instances if you want lots of threads

• Call that instance’s start method
– You put the code in run, but you call start!

Multithreaded Programming5 www.corewebprogramming.com

Thread Mechanism One:
Making a Thread Subclass

public class DriverClass extends SomeClass {
...
public void startAThread() {

// Create a Thread object
ThreadClass thread = new ThreadClass();
// Start it in a separate process
thread.start();

}
}

public class ThreadClass extends Thread {
public void run() {

// Thread behavior here
}

}

Multithreaded Programming6 www.corewebprogramming.com

Thread Mechanism One:
Example

public class Counter extends Thread {
private static int totalNum = 0;
private int currentNum, loopLimit;

public Counter(int loopLimit) {
this.loopLimit = loopLimit;
currentNum = totalNum++;

}

private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds)); }
catch(InterruptedException ie) {}

}

...

Multithreaded Programming7 www.corewebprogramming.com

Thread Mechanism One:
Example (Continued)
...

/** When run finishes, the thread exits. */

public void run() {
for(int i=0; i<loopLimit; i++) {

System.out.println("Counter " + currentNum
+ ": " + i);

pause(Math.random()); // Sleep for up to 1 second
}

}
}

Multithreaded Programming8 www.corewebprogramming.com

Thread Mechanism One:
Example (Continued)
public class CounterTest {
public static void main(String[] args) {
Counter c1 = new Counter(5);
Counter c2 = new Counter(5);
Counter c3 = new Counter(5);
c1.start();
c2.start();
c3.start();

}
}

Multithreaded Programming9 www.corewebprogramming.com

Thread Mechanism One: Result
Counter 0: 0
Counter 1: 0
Counter 2: 0
Counter 1: 1
Counter 2: 1
Counter 1: 2
Counter 0: 1
Counter 0: 2
Counter 1: 3
Counter 2: 2
Counter 0: 3
Counter 1: 4
Counter 0: 4
Counter 2: 3
Counter 2: 4

Multithreaded Programming10 www.corewebprogramming.com

Thread Mechanism Two:
Implementing Runnable

• Put the actions to be performed in the run
method of your existing class

• Have class implement Runnable interface
– If your class already extends some other class (e.g.,

Applet), why can't it still extend Thread? Because Java
does not support multiple inheritance.

• Construct an instance of Thread passing in
the existing object (i.e., the Runnable)
– Thread t = new Thread(theRunnableObject);

• Call that Thread’s start method
– t.start();

Multithreaded Programming11 www.corewebprogramming.com

Thread Mechanism Two:
Implementing Runnable (Cont.)
public class ThreadedClass extends AnyClass

implements Runnable {
public void run() {

// Thread behavior here
// If you want to access thread instance
// (e.g. to get private per-thread data), use
// Thread.currentThread().

}

public void startThread() {
Thread t = new Thread(this);
t.start(); // Calls back to run method in this

}
...

}

Multithreaded Programming12 www.corewebprogramming.com

Thread Mechanism Two:
Example
public class Counter2 implements Runnable {

private static int totalNum = 0;
private int currentNum, loopLimit;

public Counter2(int loopLimit) {
this.loopLimit = loopLimit;
currentNum = totalNum++;
Thread t = new Thread(this);
t.start();

}
...

Multithreaded Programming13 www.corewebprogramming.com

Thread Mechanism Two:
Example (Continued)
...
private void pause(double seconds) {

try { Thread.sleep(Math.round(1000.0*seconds)); }
catch(InterruptedException ie) {}

}

public void run() {
for(int i=0; i<loopLimit; i++) {

System.out.println("Counter " + currentNum
+ ": " + i);

pause(Math.random()); // Sleep for up to 1 second
}

}
}

Multithreaded Programming14 www.corewebprogramming.com

Thread Mechanism Two:
Example (Continued)
public class Counter2Test {

public static void main(String[] args) {
Counter2 c1 = new Counter2(5);
Counter2 c2 = new Counter2(5);
Counter2 c3 = new Counter2(5);

}
}

Multithreaded Programming15 www.corewebprogramming.com

Thread Mechanism Two: Result
Counter 0: 0
Counter 1: 0
Counter 2: 0
Counter 1: 1
Counter 1: 2
Counter 0: 1
Counter 1: 3
Counter 2: 1
Counter 0: 2
Counter 0: 3
Counter 1: 4
Counter 2: 2
Counter 2: 3
Counter 0: 4
Counter 2: 4

Multithreaded Programming16 www.corewebprogramming.com

Race Conditions: Example
public class BuggyCounterApplet extends Applet

implements Runnable{
private int totalNum = 0;
private int loopLimit = 5;

public void start() {
Thread t;
for(int i=0; i<3; i++) {

t = new Thread(this);
t.start();

}
}

private void pause(double seconds) {
try { Thread.sleep(Math.round(1000.0*seconds)); }
catch(InterruptedException ie) {}

}
...

Multithreaded Programming17 www.corewebprogramming.com

Race Conditions: Example
(Continued)
...
public void run() {

int currentNum = totalNum;
System.out.println("Setting currentNum to "

+ currentNum);
totalNum = totalNum + 1;
for(int i=0; i<loopLimit; i++) {

System.out.println("Counter "
+ currentNum + ": " + i);

pause(Math.random());
}

}
}

• What's wrong with this code?

Multithreaded Programming18 www.corewebprogramming.com

Race Conditions: Result
• Occasional Output
Setting currentNum to 0
Counter 0: 0
Setting currentNum to 1
Setting currentNum to 1
Counter 0: 1
Counter 1: 0
Counter 1: 0
Counter 0: 2
Counter 0: 3
Counter 1: 1
Counter 0: 4
Counter 1: 1
Counter 1: 2
Counter 1: 3
Counter 1: 2
Counter 1: 3
Counter 1: 4
Counter 1: 4

• Usual Output
Setting currentNum to 0
Counter 0: 0
Setting currentNum to 1
Counter 1: 0
Setting currentNum to 2
Counter 2: 0
Counter 2: 1
Counter 1: 1
Counter 0: 1
Counter 2: 2
Counter 0: 2
Counter 1: 2
Counter 1: 3
Counter 0: 3
Counter 2: 3
Counter 1: 4
Counter 2: 4
Counter 0: 4

Multithreaded Programming19 www.corewebprogramming.com

Race Conditions: Solution?
• Do things in a single step

public void run() {
int currentNum = totalNum++;
System.out.println("Setting currentNum to "

+ currentNum);
for(int i=0; i<loopLimit; i++) {

System.out.println("Counter "
+ currentNum + ": " + i);

pause(Math.random());
}

}

Multithreaded Programming20 www.corewebprogramming.com

Arbitrating Contention for
Shared Resources

• Synchronizing a Section of Code
synchronized(someObject) {

code
}

• Normal interpretation
– Once a thread enters the code, no other thread can enter

until the first thread exits.
• Stronger interpretation

– Once a thread enters the code, no other thread can enter
any section of code that is synchronized using the same
“lock” tag

Multithreaded Programming21 www.corewebprogramming.com

Arbitrating Contention for
Shared Resources

• Synchronizing an Entire Method
public synchronized void someMethod() {

body
}

• Note that this is equivalent to
public void someMethod() {

synchronized(this) {
body

}
}

Multithreaded Programming22 www.corewebprogramming.com

Common Synchronization Bug

• What’s wrong with this class?
public class SomeThreadedClass extends Thread {

private static RandomClass someSharedObject;
...
public synchronized void doSomeOperation() {

accessSomeSharedObject();
}
...
public void run() {

while(someCondition) {
doSomeOperation(); // Accesses shared data
doSomeOtherOperation();// No shared data

}
}

}

Multithreaded Programming23 www.corewebprogramming.com

Synchronization Solution
• Solution 1: synchronize on the shared data

public void doSomeOperation() {
synchronized(someSharedObject) {

accessSomeSharedObject();
}

}

• Solution 2: synchronize on the class object
public void doSomeOperation() {

synchronized(SomeThreadedClass.class) {
accessSomeSharedObject();

}
}

– Note that if you synchronize a static method, the lock is the
corresponding Class object, not this

Multithreaded Programming24 www.corewebprogramming.com

Synchronization Solution
(Continued)

• Solution 3: synchronize on arbitrary object

public class SomeThreadedClass extends Thread {
private static Object lockObject

= new Object();
...
public void doSomeOperation() {

synchronized(lockObject) {
accessSomeSharedObject();

}
}
...

}

– Why doesn't this problem usually occur with Runnable?

Multithreaded Programming25 www.corewebprogramming.com

Thread Lifecycle

new

wait()

yield()

notify()

dispatch

ready

start()

running

waiting

blocked

sleeping
sleep()

Block on I/O

times expires
or interrupted

I/O completed

deadrun completes

Multithreaded Programming26 www.corewebprogramming.com

Useful Thread Constructors
• Thread()

– Default version you get when you call constructor of your
custom Thread subclass.

• Thread(Runnable target)
– Creates a thread, that, once started, will execute the run

method of the target
• Thread(ThreadGroup group,

Runnable target)
– Creates a thread and places it in the specified thread group
– A ThreadGroup is a collection of threads that can be

operated on as a set
• Thread(String name)

– Creates a thread with the given name
– Useful for debugging

Multithreaded Programming27 www.corewebprogramming.com

Thread Priorities
• A thread’s default priority is the same as the

creating thread
• Thread API defines three thread priorities

•Thread.MAX_PRIORITY (typically 10)
•Thread.NORM_PRIORITY (typically 5)
•Thread.MIN_PRIORITY (typically 1)

• Problems
– A Java thread priority may map differently to the thread

priorities of the underlying OS
• Solaris has 232–1 priority level; Windows NT has 7

user priority levels
– Starvation can occur for lower-priority threads if the

higher-priority threads never terminate, sleep, or wait for
I/O

Multithreaded Programming28 www.corewebprogramming.com

Useful Thread Methods
• currentThread

– Returns a reference to the currently executing thread
– This is a static method that can be called by arbitrary methods,

not just from within a Thread object
• I.e., anyone can call Thread.currentThread

• interrupt
– One of two outcomes:

• If the thread is executing join, sleep, or wait, an
InterruptedException is thrown

• Sets a flag, from which the interrupted thread can check
(isInterrupted)

• interrupted
– Checks whether the currently executing thread has a request for

interruption (checks flag) and clears the flag

Multithreaded Programming29 www.corewebprogramming.com

Useful Thread Methods
(Continued)

• isInterrupted
– Simply checks whether the thread’s interrupt flag has

been set (does not modify the flag)
• Reset the flag by calling interrupted from within

the run method of the flagged thread
• join

– Joins to another thread by simply waiting (sleeps) until
the other thread has completed execution

• isDaemon/setDaemon
– Determines or set the thread to be a daemon
– A Java program will exit when the only active threads

remaining are daemon threads

Multithreaded Programming30 www.corewebprogramming.com

Useful Thread Methods
(Continued)

• start
– Initializes the thread and then calls run
– If the thread was constructed by providing a Runnable,

then start calls the run method of that Runnable
• run

– The method in which a created thread will execute
– Do not call run directly; call start on the thread object
– When run completes the thread enters a dead state and

cannot be restarted

Multithreaded Programming31 www.corewebprogramming.com

Useful Thread Methods
(Continued)

• sleep
– Causes the currently executing thread to do a

nonbusy wait for at least the amount of time
(milliseconds), unless interrupted

– As a static method, may be called for nonthreaded
applications as well

• I.e., anyone can call Thread.sleep
• Note that sleep throws InterruptedException. Need

try/catch
• yield

– Allows any other threads of the same or higher
priority to execute (moves itself to the end of the
priority queue)

– If all waiting threads have a lower priority, then the
yielding thread remains on the CPU

Multithreaded Programming32 www.corewebprogramming.com

Useful Thread Methods
(Continued)

• wait/waitForAll
– Releases the lock for other threads and suspends itself

(placed in a wait queue associated with the lock)
– Thread can be restarted through notify or notifyAll
– These methods must be synchronized on the lock object of

importance

• notify/notifyAll
– Wakes up all threads waiting for the lock
– A notified doesn’t begin immediate execution, but is placed in

the runnable thread queue

Multithreaded Programming33 www.corewebprogramming.com

Stopping a Thread
public class ThreadExample implements Runnable {

private boolean running;
public ThreadExample()

Thread thread = new Thread(this);
thread.start();

}
public void run(){

running = true;
while (running) {

...
}
doCleanup();

}

public void setRunning(boolean running) {
this.running = running;

}
}

Multithreaded Programming34 www.corewebprogramming.com

Signaling with wait and notify
public class ConnectionPool implements Runnable {

...
public synchronized Connection getConnection() {

if (availableConnections.isEmpty()) {
try {

wait();
} catch(InterruptedException ie) {}
// Someone freed up a connection, so try again.
return(getConnection());

} else {
// Get available connection
...
return(connection)

}
}

Multithreaded Programming35 www.corewebprogramming.com

Signaling with wait and notify
(Continued)
public synchronized void free(Connection connection) {
busyConnections.removeElement(connection);
availableConnections.addElement(connection);
// Wake up threads that are waiting
// for a connection
notifyAll();

}
...

}

Multithreaded Programming36 www.corewebprogramming.com

Summary
• Achieve multithreaded behavior by

– Inheriting directly from Thread
(separate class approach)

– Implementing the Runnable interface
(callback approach)

• In either case, put your code in the run
method. Call start on the Thread object.

• Avoid race conditions by placing the shared
resource in a synchronized block

• You can’t restart a dead thread
• Stop threads by setting a flag that the

thread's run method checks

37 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

core

programming

Questions?

	Multithreaded Programming
	Agenda
	Concurrent Programming Using Java Threads
	Thread Mechanism One:Making a Thread Subclass
	Thread Mechanism One:Making a Thread Subclass
	Thread Mechanism One: Example
	Thread Mechanism One: Example (Continued)
	Thread Mechanism One: Example (Continued)
	Thread Mechanism One: Result
	Thread Mechanism Two:Implementing Runnable
	Thread Mechanism Two:Implementing Runnable (Cont.)
	Thread Mechanism Two: Example
	Thread Mechanism Two: Example (Continued)
	Thread Mechanism Two: Example (Continued)
	Thread Mechanism Two: Result
	Race Conditions: Example
	Race Conditions: Example (Continued)
	Race Conditions: Result
	Race Conditions: Solution?
	Arbitrating Contention for Shared Resources
	Arbitrating Contention for Shared Resources
	Common Synchronization Bug
	Synchronization Solution
	Synchronization Solution (Continued)
	Thread Lifecycle
	Useful Thread Constructors
	Thread Priorities
	Useful Thread Methods
	Useful Thread Methods (Continued)
	Useful Thread Methods (Continued)
	Useful Thread Methods (Continued)
	Useful Thread Methods (Continued)
	Stopping a Thread
	Signaling with wait and notify
	Signaling with wait and notify(Continued)
	Summary
	Questions?

		brown@corewebprogramming.com
	2003-01-03T22:44:29-0500
	Lawrence M. Brown
	Copyright 2001-2003 Core Web Programming

